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Simulation of Irreversible Cyclization of Bifunctional Chains. A Computer-aided 
Approach to the Synthesis of Many-membered Rings and to the Evaluation of 
Effective Molarities by Preparative Experiments 
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Two complementary kinetic models for the reaction of a bifunctional reactant A-B to give 
macrocycles under either batch-wise or influxion (Ziegler high dilution) conditions, are described. 
The degree of accuracy of both models is variable at  will, depending on the value of the maximum 
polymerization degree accounted for by the models themselves. On the basis of these models, a 
computer program (CYCLES) has been developed, serving both as an useful tool for the optimization 
of reaction conditions in the synthesis of many-membered rings, and as the essential means of 
obtaining effective molarities by preparative experiments. The program CYCLES performs fourth- 
order Runge-Kutta numerical integration of the set of differential rate equations pertinent to each 
kinetic model for an arbitrary value of the degree of polymerization. 

The preparation of macrocycles from long-chain bifunctional 
molecules of the type A-B requires a careful choice of the 
reaction conditions in order to control the two competitive 
processes of polymerization and cyclization. Although approxi- 
mate kinetic treatments’--3 have substantiated the principle 
that high dilution favours the formation of the monomeric ring 
at the expense of polymerization, they are useless whenever 
oligomeric rings, such as the cyclic dimer, trimer, and so on, are 
required. In fact, optimum reaction conditions are generally 
found empirically. Hence there is a great need for a general 
kinetic treatment which, taking into account all the necessary 
parameters, is able to predict the complete distribution of cyclic 
products (the direct problem). The ‘necessary parameters’ refer 
in part to experimental conditions and in part to the ring- 
closing tendencies of the various acyclic i-mers. The latter are 
measured by the corresponding effective molarities, which are 
the fundamental physicochemical parameters characterizing 
intramolecular p r o c e s s e ~ . ~ , ~  Needless to say, the converse 
problem, i.e. the recovery of the EM values from the 
experimental yields of cyclo-oligomers, is also of great interest. 
Both of these problems should be based on complex kinetic 
models not amenable to analytical solution. However, this 
difficulty may be circumvented by numerical methods, which, 
owing to the wide availability of personal computers, are 
nowadays more accessible than previously. Therefore, we report 
here the description of two complementary kinetic models the 
degree of accuracy of which can be varied at will, by varying the 
value of the maximum degree of polymerization accounted for 
by the models themselves. This approach toward solving both 
the direct and the converse problems has been implemented 
using the computer program CYCLES, which performs 
numerical integration of the rate equations pertinent to both 
the kinetic models, for an arbitrary value of the polymerization 
degree. 

Principles and Discussion 
The Underestimating Model.-Consider a bifunctional chain 

molecule A-B, where A and B are two different functional 
groups each capable of reacting irreversibly with the other only. 
It is assumed that the inherent reactivity (kinter) of the functional 
groups is independent of the size of the molecule to which they 
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Scheme 1. i = 1,2,. . . , n 

are attached.6 Consider, moreover, the reaction system outlined 
in Scheme 1, where Mi  and Ci represent the acyclic and cyclic i- 
meric oligomers, respectively, and n is the maximum degree of 
polymerization accounted for by the scheme itself, the value of 
which can be prefixed at will. In this scheme the possible 
formation of polymeric ring products Ci with i > n is neglected, 
in that any reaction between Mi  and Mj, with i + j > n, leads to 
an open-chain polymeric material P which is assumed to 
undergo only intermolecular reactions. On the other hand, 
when i + j < n the product M i + j  is capable of intramolecular 
as well as intermolecular reactions, analogously to its 
precursors Mi  and Mj. Accordingly, the complete set of 
differential rate equations can be formulated as follows: 

d[Ci]/dt = (kintrJi[Mj] i = 1,2,. . . , n (1) 
i -  1 

-dCMiI/dt = (kintra)iCMiI - kinter 1 CMjICMi-jI + 
j =  1 

n 

2kinterCMiI 1 CMjI + 2kinterCMiICPI 
j =  1 

i = 1,2,. . . , n (2) 
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where (kintra), is the specific rate for cyclization of the acyclic 
i-mer. In formulating the above rate equations allowance has 
been made for the following facts: ( i )  Two molecules of Mi 
disappear upon Mi + Mi dimerizations; (ii) the reactions Mi + 
Mj with i # j and the reactions Mi + P are, statistically, twice 
as likely than the reactions M, + Mj with i = j and  the reaction 
P + P.7 It should be noted that Scheme 1 with n = 1 coincides 
with a previously proposed kinetic scheme2 the treatment of 
which has been successively re-e~amined.~ 

Since the critical parameter characterizing intramolecular 
reactions is the effective molarity (EM), defined as the ratio 
kintra/kinter, it is convenient to divide the equations (1)-(3) by a 
dimensionless constant f of the same numerical value of kinter. 
This operation changes the time scale (t’ = f t )  and makes the 
terms (kintra)i and kinter numerically equal to EM, and 1, 
respectively. Therefore the set of equations (1)-(3) simplifies to 
equations (4)-(6). 

d[Ci]/dt’ = EMi[Mi] i = 1,2,. . . , n (4) 

i -  1 

-qMj]/dt’ = EMi[MJ - C [Mj][Mi-j] + 
j =  1 

2[Mi] [Mj] + Z[M,][P] i = 1,2,. . . , n ( 5 )  
j=  1 

There are two main techniques according to which cycliza- 
tion reactions are usually carried out for preparative pur- 
poses. One is the batch-wise procedure, where m moles of a 
bifunctional reactant M1 are added all at once to a volume V 
of solvent, where the proper conditions are set. The other is 
the injluxion procedure, which corresponds to the well known 
Ziegler high-dilution technique,* where the monomer M, is 
slowly introduced into the reaction medium, in order to 
prevent its accumulation. 

A batch-wise experiment is characterized by the initial 
monomer concentration [Milo = m/V, whereas an influxion 
experiment is characterized by the feed rate of (in mol 1-’ s-’) 
which represents the moles of bifunctional reactant M, added 
per second per litre of reaction solution. It is assumed that this 
addition does not change the volume of the reaction medium to 
a significant extent. 

In order to adapt the set of differential equations (4)-(6) to 
the influxion case, equation ( 5 )  with i = 1 is modified as shown 
in equation (7), where of, (= of,”) can be considered as a 
normalized feed rate. 

Therefore the complete set of differential equations for the 
influxion case includes equation (4) with i = 1,2,. . . , n, 
equation (7), equation ( 5 )  with i = 2,3,. . . , n, and equation (6). 

In order to integrate numerically the systems of differential 
rate equations for either the batch-wise or the influxion case, the 
EM, values ( i  = 1,2,. . . , n)  must be known. These are largely 
dependent upon the structure of the rings being formed. In 
particular for ring sizes ranging from 8* to ca. 25 an estimate of 
the effect of the structure on the EM can be obtained by the 
rather large body of EM data currently a~a i lab le .~  For larger 
ring sizes the EM is determined solely by the conformational 
entropy change upon cyclization. Accordingly the EM values 
for such rings can be calculated from equation (S), where N A  is 

Avogadro’s constant, and EM is expressed in moll-’ when r is 
given in cm.5,9,10 The mean-square chain-end displacement 
( r 2 )  is related to the number x and length b of skeletal bonds 
through equation (9), where C, is the characteristic ratio.” 

The characteristic ratio for polymeric chains of infinite length 
(C,) is usually in the range 4-1 1 . lo An intermediate value of 
C, M C, = 8 was found to account well for the cyclization 
behaviour of long polymethylene and polyoxyethylene chains 
in Me,SO.’.t 

In the batch-wise case the differential rate equations (4)- 
(6) are integrated from 0 to t‘ when condition (10) is 
verified, i.e. until the total concentration of the residual 
acyclic molecules M ,  expressed as weight %, is < 0.5%. 

n 

100 1 i[Milt,/[Mll0 < 0.5 (10) 
i =  1 

When this condition is verified, the concentration of reduced 
functional groups is so low that the major fraction of the 
residual Mi molecules, if allowed to react, would yield the 
corresponding cyclo-oligomers Ci. Therefore it can be safely 
assumed that [C,], = [C,],, + [Mi],,. 

Yields of the various cyclo-oligomers are calculated from 
their final concentrations [C,], by equation (1 l), whereas the 
amount of polymer, P, expressed in terms of weight %, is 
calculated by equation (12). 

* For ring sizes lower than 8, the EMS are generally so high that 
polymerization does not effectively compete with the formation of the 
monomeric ring.’ 
t Equations (8) and (9) (with C, = 8) have been implemented in the 
program CYCLES to facilitate the evaluation of the EMS from a certain 
i value up to n. Making use of this facility, one is only required to input 
the EMS of those cyclo-oligomers which are not sufficiently large to 
allow the application of equation (8), otherwise all the EMS from i = 1 
to n must be supplied. 
$ In the influxion case there is no need to integrate numerically equation 
(4) (uide infra). 

In the influxion case, numerical integration of the differential 
equations (7), ( 5 )  with i = 2,3,. . . , n, and (6) shows that after a 
certain amount of time a steady state for all the oligomers Mi 
and the residual polymer P is reached.$ The assumption is 
made that the steady state is maintained long enough to render 
negligible the amount of reaction products formed in the initial 
part (i.e. before the steady state is reached) and in the final part 
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Scheme 2. i = 1,2,. . . , t7 

(i.e. after the addition of reactant is stopped) of the experiment.* 
Therefore, in order to calculate the yields of cyclic oligomers, we 
only need the steady state concentrations for all of the Mi 
species ([Milst with i = 1,2,. . . , n) which are obtained by the 
numerical integration procedure. 

Since the residual polymer, P, is the last species to reach the 
steady state, the integration is carried out until the derivative 
d[P]/dt' becomes negligibly small. According to equation (6) 
the derivative of [PI is given by the difference of two terms. This 
difference can be considered to be negligibly small when it is less 
thatn 0.1% of the sum of the above two terms, i.e. when 
condition ( 1  3) is verified. 

2 n  n 

< 0.1 (13) j = i i + l  k = j - n  

2 n  n 
1 00 

j = n +  1 k = j - n  

Yields of cyclic products are given by equation (14), where 
the numerator of the fraction represents the weight amount of 
Ci produced per unit of time and volume under the steady-state 
conditon, whereas the amount of polymer, P, is calculated 
according to equation (12). 

Independently of the technique being considered (batch-wise 
or influxion), accurate yield data for the cyclo-oligomers are 
obtained when the value of n is high enough to render low the 
Z P  value. Whenever the "/,P value is significant, yields of cyclo- 
oligomers are underestimated, as Scheme 1, neglecting the 
intramolecular reactivity of P, exaggerates the probability of 
intermolecular reactions between the Mi species and P. For this 
very reason we indicate the kinetic model outlined in Scheme 1 
as the underestimating model (UM). 

The Overestimating Model.-It is worth remarking that in 

* This condition need not be strictly followed in practice since the 
amount of cyclic products formed in the final part of the reaction tends 
to compensate the smaller amount of cyclic products formed before the 
steady state is reached. 
-i- These cases are characterized by high [M ,lo or rf, values and/or  low 
EM values. 
$ These calculations which refer to the cyclization of typical A-B chains 
under batch-wise and influxion conditions were carried out using an 
early version of the program, based on the time-consuming Euler 
method as the integration algorithm, and which was only capable of 
O M  calculations with t? = 12. 
9 It could be shown that :oPbM must tend to zero monotonically on 
increasing t i ,  and that for the same n value, %P,, is always higher than 
o{,P,,. Therefore "<Po, must also tend to zero for sufficiently high ti- 

values. However, "/OP,, may not vary monotonically. 

some cases,? to obtain low %P values, n should be very 
large, and this would make calculations impractically wasteful 
of computer time. In these cases, instead of increasing n, it may 
be more advantageous to repeat the calculations according to 
the overestimating model (OM) outlined in Scheme 2. In this 
scheme the residual polymer P has no influence on the reaction 
course, thus implying that P may be viewed as being either 
unreactive or capable of undergoing only intramolecular 
reactions. 

We have shown in previous work that, for a batch-wise 
experiment, the set of differential rate equations pertinent to 
Scheme 2 can be formulated as fol10ws:~ 

d[Ci]/dt' = EMi[Mi] i = 1,2,. . . , n (15) 
i -  1 

-d[Mi]/dt' = EMi[Mi] - 1 [Mj][Mi-j] + 
j =  1 

2[Mi] [Mj] i = 1,2,. . . , n (16) 
j=  1 

whereas for an influxion experiment equation (16) with i = 1 
must be modified as shown in equation (17), the other equations 
remaining unchanged.' I 

The analytical solutions for both the batch-wise and the 
influxion techniques relative to Scheme 2 with n = 1,3 and a 
number of calculationsf relative to Scheme 2 with n = 12,'.11 
have been reported. The differential rate equations relative to 
Scheme 2 in the batch-wise case, likewise those relative to 
Scheme 1, are integrated until condition (10) is verified. The 
corresponding yields of cyclic products and of the residual 
polymer are given by equations (1  1) and (12), respectively. By 
contrast, the rate equations relative to Scheme 2 in the 
influxion case are integrated until condition (18) is verified, i.e. 
until a steady state is reached, in which the monomer added 
during the small time interval s (the step size of the numerical 
integration) does not change the population of open-chain 
molecules to a significant extent, i.e. more than 0.1%. 

"/Ci  and %P are calculated using equation (14) and (12), 
respectively. Clearly, whenever %P is significant, Scheme 2 
overestimates the yields of cyclic products, in that it does not 
take into account the intermolecular reactions between P and 
the Mi species, that would occur in competition with the ring- 
closure processes.7.§ Therefore, the two models provide a lower 
and an upper limit for the yields of each of the n-cyclo- 
oligomers. Obviously on increasing n the two limits converge to 
the true value of the yield, which is given by both models when 
9:P is low. This is shown in Tables 1 and 2, in which are reported 
results obtained using the program CYCLES. The results in 
Table 1 refer to a hypothetical cyclization carried out under 
batch-wise conditions ([Milo = 0.1 M) of a bifunctional chain 
leading to a 10-membered ring, so that C2 is 20-membered, C3 
30-membered, and so on. The typical values of 1 x mol I-', 
and 3 x mol I-' were assumed for EM, and EM2 
re~pectively,~ whereas the values from EM, onwards were 
calculated by the program according to equations (8) and (9) 
with C, = 8 and h = 1.54 x lo-' cm. The calculations were 
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Table 1. Percent yields of C(1)-C( 10) and P for a batch-wise cyclization 
as given by the two models (UM, OM) for selected n values" 

n 

1 3 5 10 50 
C ,  8.7-15.3 
C2 

9.6-1 1.6 9.9-10.9 10.1-10.4 
17.9-22.0 18.6-20.1 18.8-19.1 
16.2-20.8 16.9-18.4 17.1-1 7.3 

10.G11.5 10.2-10.5 
6.8-8.4 7.0-7.3 

5.2-5.6 
4.1-4.5 

2 . 6 3 . 1  
3.2-3.7 

2.1-2.6 

10.1-10.1 
18.9-18.9 
17.1-17.1 
10.3- 1 0.3 
7.1-7.1 
5.3-5.3 
4.1-4.1 
3.3-3.3 
2.7-2.7 
2.2-2.3 

P 91.3-84.8 56 .345 .6  37.9-30.6 19.G15.9 1.6-1.4 

"All the numerical integrations were carried out with step size = 1. 
The yields of C( 1 1)-C(50) are not reported. 

Table 2. Percent yields of C( 1)-C( 10) and P for an influxion cyclization 
as given by the two models (UM, OM) for selected n values" 

n 

1 3 5 10 50 
C l  14.6-20.0 15.8-17.7 
C ,  18.0-24.5 
c3 12.6-20.4 
c4 
C5 
c, 
C ,  
C8 
CY 
ClO 

16.1-1 7.3 16.4-16.9 
19.1-23.0 19.7-21.7 
13.9-18.7 14.6-17.0 
6.2-9.5 6.7-8.3 
3.4-5.7 3.8-5.0 

2.4-3.5 
1.7-2.6 
1.2-2.0 
0.9-1.6 
0.7-1.3 

16.4-16.6 
20.1-20.5 
15 .k15 .5  
7.0-7.3 
4 . W . 2  
2.6-2.8 
1.8-2.0 
1.3- 1.5 
1.0-1.2 
0.8-0.9 

P 85.4-80.0 53.6-37.5 41.3-25.9 31.7-20.0 24.G19.3 
t6, 73 78 83 116 263 

I' All the numerical integrations were carried out with step size = 0.5. 
The yields of C( 11)-C(50) are not reported. 
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Figure. Solution of the converse problem for n = 3, [MI], = 0.02 mol 
I-', and %CTp = 36.2, %CYp = 34.9, %C?P = 16.8. The solid lines refer 
to the UM whereas the dashed lines refer to the OM. The 'experimental 
yields' were actually calculated with the EM values indicated on the 
right side of the figure using an extended model which rendered %P 
negligible 

made according to both the UM and the OM for increasing 
values of the polymerization degree. It can be seen that the 
yields given by the two models coincide when %P is sufficiently 
low. Analogously, in Table 2 are reported the results obtained 
when the same cyclization is carried out under influxion 
conditions (of, = 0.001 mol 1-' s-'). 

Also reported in Table 2 is the time tst,  required to reach the 
99.5% of the steady-state concentration of M ,  as given by the 
OM. Of course if %P is not negligible the t,,, value is 
approximate. Knowledge of the value of tSI (tSI = t&) is useful 
to carry out properly an influxion experiment aimed at the 
preparation of the lower cyclo-oligomers in that the corres- 
ponding acyclic i-mers reach the steady-state shortly after MI. 

The Converse Problem-The previous sections illustrated the 
direct problem, i.e. the problem of finding the yields of all 
the cyclo-oligomers under certain experimental conditions, 
provided that the values of all the EM'S are known. Now let us 
consider the converse problem, i.e. the recovery of the EM 
values from the experimental yields of cyclic products. 

For the sake of accuracy and experimental convenience, 
the batch-wise technique is the elective procedure to 
obtain experimental yields aimed to the evaluation of EMS. 
Accordingly the program CYCLES, when dealing with the 
converse problem, only takes into account this technique. A 
method for solving the converse problem with reference to the 
overestimating model, has been outlined previously.' The same 
method can be applied to the underestimating model. 

It should be noted that in the converse problem whenever %P 
is significant, the EMS are underestimated by the OM and 
overestimated by the UM. Of course the two models coincide 
when %P is low, yielding the same EM values. The method 
consists of an iterative procedure refining a trial set of EM 
values on the basis of the experimental yields of cyclo-oligomers. 
After each iteration a new EM set (EM:'", i = 1,2,. . . , n)  is 
calculated from the old one (EM:*d, i = 1,2,. . . , n)  by equation 
(19) where %C;xP and %Cfalc are the experimental and the 

calculated percentage yields of the i-meric ring, respectively. The 
latter is calculated using either Scheme 1 or Scheme 2 with the 
old EM set. The iteration is continued until %Cfalc coincides 
with %CfxP for all the cyclo-oligomers. 

It seems likely that in most cases of practical interest, precise 
yield data can be obtained only for the lower cyclo-oligomers, 
despite the fact that the yields of the higher ones would be not 
negligible. In this case if n coincides with the number of cyclo- 
oligomers for which the yield is known, the two models will 
afford a lower and an upper limit for the EM of each of them, as 
shown for example in the Figure. However, if it is possible to 
estimate the EMS of the higher cyclo-oligomers, for example on 
the basis of equation (8), the value of n can be higher, and more 
precise EM values for the lower cyclo-oligomers can be 
obtained. Of course, since in this case equation (19) is limited to 
those rings for which the experimental yield is available the 
EMS of the other rings cannot be optimized. 

The Progrurn CYCLES.-CYCLES is a computer program 
based on the principles described above. It performs fourth- 
order Runge-Kutta' numerical integration of the set of 
differential rate equations pertinent to either Scheme 1 or 
Scheme 2, under either batch-wise or influxion conditions. It 
was written and compiled with a 'Turbo BASIC' compiler 
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(Borland International Inc.), and runs on IBM PCs and 
compatibles. However, it can be easily translated into other 
BASIC dialects or languages (FORTRAN, PASCAL, etc.) to 
run on other computers. 

The listing of the program CYCLES is available as 
Supplementary Publication No. SUP 56729 (7 pp).* The 
program was conceived to be a useful tool for the optimization 
of reaction conditions in the synthesis of many-membered rings, 
and as the essential means of obtaining EM values from 
preparative experiments. For both applications a number of 
requisites must be fulfilled by the reaction system. In particular, 
besides the assumptions already indicated that should be 
verified in practice, it is necessary that the reaction medium is 
homogeneous and that no side-reactions occur. Moreover 
batch-wise reactions must be carried out to completion, whereas 
influxion experiments should be conducted under steady-state 
conditions for a period oftime sufficiently longer than the time tSt. 

The synthetic chemist aiming to synthesize a certain cyclo- 
oligomer from a chain molecule of the type A-B, should first 
estimate the pertinent set of EMS. In some cases an a priori 
estimate based on known EM data or on equation (8), which 
presupposes a regular structure of the A-B chain, may be 
difficult. In these cases a batch-wise experiment should be 
carried out with a medium [Milo value of, say, ca. 1 x 1t2 mol 
1-’. On the basis of the experimental yields of the cyclo- 
oligomers so obtained, the program CYCLES will afford the 
desired set of EM values by solution of the converse problem.? 
With this set in hand it is possible to predict, using the program 
CYCLES, the outcome of any possible batch-wise or influxion 
experiment, selecting those experimental conditions which 
would give the best results. However in order to perform an 
influxion experiment, the value, or at least a rough estimate, of 
kinter is necessary to allow the calculation of the actual feed rate 
uf from the uf, value (uf = u,a. 

* For details of Supplementary Publications see Instructions for 
Authors (1989), J. Chem. Soc., Perkin Trans. 2, 1988, Issue 1, p. xvii. 
t If the aim is evaluation of accurate EM data, it is advisable to carry 
out a certain number of batch-wise experiments using different [M,], 
values. 

In previous work” we have shown that there is a close 
correlation between yields and selectivities as obtained using 
either the batch-wise or the influxion technique. The criteria of 
choice between the two procedures, established on the basis of 
practical convenience, have been discussed.’ The extension 
of the program CYCLES to include two-component ring 
 los sure,^^'^^ i.e. A-A + B-B, is under current investigation. 
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